Visualize and Analyze Time-series IoT Data

Dr. Hui Zhang, Ranjini Subramanian RET18

Data Science

Data Science

Extraction of knowledge from large volumes of data that are structured or unstructured

Project

Introduction - Visualize and Analyze Time-series IoT Data

- The internet of things has numerous applications in healthcare
 - remote monitoring ,smart sensors and medical device integration
- Healthcare IoT has the potential to
 - keep patients safe and healthy
 - improve how physicians deliver care as well
 - boost patient engagement and satisfaction by allowing patients to spend more time interacting with their doctors.

What is a Time Series?

- Set of evenly spaced numerical data
 - Obtained by observing response variable at regular time periods
- Forecast based only on past values
 - Assumes that factors influencing past, present, & future will continue
- Example

Year:	2001	2002	2003	2004	2005
Sales:	78.7	63.5	89.7	93.2	92.1

- To find of the temporal relationship of "events" identified in the data collected from different sources.
- The underlying hypothesis is that the sequential patterns will spring from the large amount of multi-dimensional data sources if visualized and analyzed in the right and smart way

Weekly Plan

- Get familiar with R by taking <u>Datacamp Free R course</u>
- Install <u>R</u> and <u>RStudio</u> (see links above) and try R programming
 - Try sample R code to create data frames
 - Try sample R code to read and write CSV files
 - How to create an R notebook on RStudio
- Paper reading: <u>Medical Internet of Things and Big Data in HealthCare</u>

- Complete <u>Datacamp Free R course</u>
- Research and hands-on experience: from raw accelometer CSV data to R data frame
- Paper reading: Medical Internet of Things and Big Data in HealthCare

The Background

1.Wearables and mobile apps today support symptom tracking, disease management, and care coordination

2.IoT allows different devices to send and receive data enabling better connectivity, data processing, and analytics

3.Data challenges in IoT:

- Large-scale machine generated time series
- resolution, scale, complexity
- visualization and analysis
 - Feature engineering + Data Science

Name	Date modified	Туре	Size
4B1AA5_04232017_accelerometer.protobin	1/26/2018 2:56 PM	Microsoft Excel C	275,033 KB
4B1AA5_04232017_ambient_temp.protobin	1/26/2018 3:08 PM	Microsoft Excel C	43 KB
4B1AA5_04232017_eda.protobin	1/26/2018 3:07 PM	Microsoft Excel C	43,000 KB
4B1AA5_04232017_gyroscope.protobin	1/26/2018 3:06 PM	Microsoft Excel C	346,524 KB
4B1AA5_04232017_humidity.protobin	1/26/2018 3:05 PM	Microsoft Excel C	44 KB
4B1AA5_04232017_ppg.protobin	1/26/2018 3:03 PM	Microsoft Excel C	88,371 KB
4B1AA5_04232017_pressure.protobin	1/26/2018 3:00 PM	Microsoft Excel C	46 KB
4B1AA5_04232017_wearing.protobin	1/29/2018 4:22 PM	Microsoft Excel C	1 KB
🖺 4B1AA5_04242017_accelerometer.protobin	1/26/2018 3:45 PM	Microsoft Excel C	274,996 KB
🖺 4B1AA5_04242017_ambient_temp.protobin	1/26/2018 3:44 PM	Microsoft Excel C	43 KB
🖺 4B1AA5_04242017_eda.protobin	1/26/2018 3:44 PM	Microsoft Excel C	42,999 KB
🖺 4B1AA5_04242017_gyroscope.protobin	1/26/2018 3:44 PM	Microsoft Excel C	346,811 KB
🖺 4B1AA5_04242017_humidity.protobin	1/26/2018 3:44 PM	Microsoft Excel C	44 KB
🖺 4B1AA5_04242017_ppg.protobin	1/26/2018 3:43 PM	Microsoft Excel C	88,414 KB
🖺 4B1AA5_04242017_pressure.protobin	1/26/2018 3:43 PM	Microsoft Excel C	46 KB
🖺 4B1AA5_04242017_wearing.protobin	2/12/2018 11:28 AM	Microsoft Excel C	2 KB
🖺 4B1AA5_04252017_accelerometer.protobin	1/26/2018 3:11 PM	Microsoft Excel C	273,924 KB
🖺 4B1AA5_04252017_ambient_temp.protobin	1/26/2018 3:12 PM	Microsoft Excel C	43 KB
🖺 4B1AA5_04252017_eda.protobin	1/26/2018 3:13 PM	Microsoft Excel C	43,000 KB
🖺 4B1AA5_04252017_gyroscope.protobin	1/26/2018 3:13 PM	Microsoft Excel C	346,513 KB
🖺 4B1AA5_04252017_humidity.protobin	1/26/2018 3:14 PM	Microsoft Excel C	44 KB
🖺 4B1AA5_04252017_in_bed.protobin	1/29/2018 4:38 PM	Microsoft Excel C	1 KB
🖺 4B1AA5_04252017_in_bed_heart_rate.prot	1/26/2018 3:15 PM	Microsoft Excel C	331 KB
🖺 4B1AA5_04252017_ppg.protobin	1/26/2018 3:15 PM	Microsoft Excel C	88,624 KB
🖺 4B1AA5_04252017_pressure.protobin	1/26/2018 3:16 PM	Microsoft Excel C	46 KB
🖺 4B1AA5_04252017_wearing.protobin	2/12/2018 11:51 AM	Microsoft Excel C	2 KB
4B1AA5_04262017_accelerometer.protobin	1/26/2018 3:21 PM	Microsoft Excel C	155,777 KB
🖺 4B1AA5_04262017_ambient_temp.protobin	1/26/2018 3:22 PM	Microsoft Excel C	24 KB
4B1AA5_04262017_eda.protobin	1/26/2018 3:22 PM	Microsoft Excel C	24,297 KB
B1AA5_04262017_gyroscope.protobin	1/26/2018 3:23 PM	Microsoft Excel C	196,572 KB
P 4P1AA5 04262017 humidity protobin	1/26/2019 2-24 DM	Microsoft EvenI C	25 V.D

- Research and hands-on experience: convert R data frame to plotting
- Paper reading: <u>Health Monitoring and Management Using IoT Sensing with Cloud-based Processing:</u>

Opportunities and Challenges

Research and evaluate visualization and analysis methods for time-series data

- Research and hands-on experience: R interactive plotting
- Paper reading: <u>Health Monitoring and Management Using IoT Sensing with Cloud-based Processing:</u>

Opportunities and Challenges

Research and evaluate visualization and analysis methods for time-series data

exploration

- Research and hands-on experience: plotting IoT data from multiple sources
- Paper reading: Revolutionizing the HealthCare Industry with Big Data, Analytics, and Visualization

Research and evaluate visualization and analysis methods for time-series data

synchronization Re-grid

Research and evaluate visualization and analysis methods for time-series data

Feature computation

	tBodyAcc.meanX	tBodyAcc.meanY	tBodyAcc.meanZ	tBodyAcc.stdX	tBodyAcc.stdY
	<ld><</ld>	<dbl></dbl>	<ld>></ld>	<ld>></ld>	<dbl></dbl>
1	0.2885845	-0.02029417	-0.1329051	-0.9952786	-0.9831106
2	0.2784188	-0.01641057	-0.1235202	-0.9982453	-0.9753002
3	0.2796531	-0.01946716	-0.1134617	-0.9953796	-0.9671870
3 rows	1 1-6 of 563 columns	Principal Compon			

Framework of visualization and analysis methods for time-series data

- Research and hands-on experience: experiment with classifying time series
- Paper reading: Revolutionizing the HealthCare Industry with Big Data, Analytics, and Visualization

Technique, Languages, Platform

- Prototype of basic methods in R and its packages (ts, ggplot)
- Towards a Shiny/R app (Shiny/R)
- Resources <u>http://cecsresearch.org/vcl/RET18/</u>