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Abstract—Among the panoply of applications enabled by the
Internet of Things (IoT), smart and connected health care is a
particularly important one. Networked sensors, either worn on
the body or embedded in our living environments, make possible
the gathering of rich information indicative of our physical and
mental health. Captured on a continual basis, aggregated, and
effectively mined, such information can bring about a positive
transformative change in the health care landscape. In partic-
ular, the availability of data at hitherto unimagined scales and
temporal longitudes coupled with a new generation of intelligent
processing algorithms can: (a) facilitate an evolution in the
practice of medicine, from the current post facto diagnose-and-
treat reactive paradigm, to a proactive framework for prognosis
of diseases at an incipient stage, coupled with prevention, cure,
and overall management of health instead of disease, (b) enable
personalization of treatment and management options targeted
particularly to the specific circumstances and needs of the
individual, and (c) help reduce the cost of health care while
simultaneously improving outcomes. In this paper, we highlight
the opportunities and challenges for IoT in realizing this vision
of the future of health care.

Keywords-remote health monitoring; IoT; visualization; ana-
lytics;

I. INTRODUCTION

Recent years have seen a rising interest in wearable sensors

and today several devices are commercially available [1]–[3]

for personal health care, fitness, and activity awareness. In

addition to the niche recreational fitness arena catered to by

current devices, researchers have also considered applications

of such technologies in clinical applications in remote health

monitoring systems for long term recording, management and

clinical access to patient’s physiological information [4]–[8].

Based on current technological trends, one can readily imagine

a time in the near future when your routine physical exami-

nation is preceded by a two–three day period of continuous

physiological monitoring using inexpensive wearable sensors.

Over this interval, the sensors would continuously record

signals correlated with your key physiological parameters and

relay the resulting data to a database linked with your health

records. When you show up for your physical examination,

the doctor has available not only conventional clinic/lab-test

based static measurements of your physiological and metabolic

state, but also the much richer longitudinal record provided by

the sensors. Using the available data, and aided by decision-

support systems that also have access to a large corpus of

observation data for other individuals, the doctor can make

a much better prognosis for your health and recommend

treatment, early intervention, and life-style choices that are

particularly effective in improving the quality of your health.

Such a disruptive technology could have a transformative

impact on global healthcare systems and drastically reduce

healthcare costs and improve speed and accuracy for diag-

noses.

Technologically, the vision presented in the preceding para-

graph has been feasible for a few years now. Yet, wearable

sensors have, thus far, had little influence on the current clin-

ical practice of medicine. In this paper, we focus particularly

on the clinical arena and examine the opportunities afforded

by available and upcoming technologies and the challenges

that must be addressed in order to allow integration of these

into the practice of medicine. The paper is organized as

follows: Section II highlight some of the key related work

in this area. In Section III, we outline the architecture for

remote health monitoring systems based on wearable sensors,

partitioning the system into for main components acquisition,

analytics, and visualization. In Sections IV– VII we highlight

the opportunities and challenges related to each of these

components. We conclude the paper in Section VIII with a

summary and discussion.

II. BACKGROUND

Most proposed frameworks for remote health monitoring

leverage a three tier architecture: a Wireless Body Area

Network (WBAN) consisting of wearable sensors as the data

acquisition unit, communication and networking and the ser-

vice layer [4], [7]–[10]. For instance [11] proposes a system

that recruits wearable sensors to measure various physiological

parameters such as blood pressure and body temperature.
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Sensors transmit the gathered information to a gateway server

through a Bluetooth connection. The gateway server turns the

data into an Observation and Measurement file and stores it

on a remote server for later retrieval by clinicians through the

Internet. Utilizing a similar cloud based medical data storage,

a health monitoring system is presented in [12] in which

medical staff can access the stored data online through content

service application. Targeting a specific medical application,

WANDA [13] an end to end remote health monitoring and

analytics system is presented for supervision of patients with

high risk of heart failure.

In addition to the technology for data gathering, storage

and access, medical data analysis and visualization are critical

components of remote health monitoring systems. Accurate

diagnoses and monitoring of patient’s medical condition relies

on analysis of medical records containing various physio-

logical characteristics over a long period of time. Dealing

with data of high dimensionality in both time and quantity

makes data analysis task quite frustrating and error prone for

clinicians. Although the use of data mining and visualization

techniques had previously been addressed as a solution to

the aforementioned challenge [14], [15], these methods have

only recently gained attention in remote health monitoring

systems [16], [17].

While the advent of electronic remote health monitoring

systems has promised to revolutionize the conventional health

care methods, integrating the IoT paradigm into these systems

can further increase intelligence, flexibility and interoperabil-

ity [9], [18]. A device utilizing the IoT scheme is uniquely

addressed and identifiable at any time and anywhere through

the Internet. IoT based devices in remote health monitoring

systems are not only capable of the conventional sensing

tasks but can also exchange information with each other,

automatically connect to and exchange information with health

institutes through the Internet, significantly simplifying set up

and administration tasks. As exemplified in [19], such systems

are able to provide services such as automatic alarm to the

nearest healthcare institute in the event of a critical accident

for a supervised patient.

III. SYSTEM ARCHITECTURE

Figure 1 illustrates the system architecture for a remote

health monitoring system, whose major components we de-

scribe next:

Data Acquisition is performed by multiple wearable sen-

sors that measure physiological biomarkers, such as ECG,

skin temperature, respiratory rate, EMG muscle activity, and

gait (posture). The sensors connect to the network though an

intermediate data aggregator or concentrator, which is typically

a smart phone located in the vicinity of the patient.

The Data Transmission components of the system are

responsible for conveying recordings of the patient from the

patient’s house (or any remote location) to the data center

of the Healthcare Organization (HCO) with assured security

and privacy, ideally in near real-time. Typically, the sensory

acquisition platform is equipped with a short range radio such

Fig. 1. Components of a remote patient monitoring system that is based on
an IoT-Cloud architecture.

as Zigbee or low-power Bluetooth, which it uses to transfer

sensor data to the concentrator. Aggregated data is further

relayed to a HCO for long term storage using Internet connec-

tivity on the concentrator, typically via a smartphone’s WiFi or

cellular data connection. Sensors in the data acquisition part

form an Internet of Things (IoT)-based architecture as each

individual sensor’s data can be accessed through the Internet

via the concentrator [20], [21].

Often a storage/processing device in vicinity of a mobile

client, sometimes referred to as a cloudlet, is used to augment

its storage/processing capability whenever the local mobile

resources do not fulfill the application’s requirements [22].

The cloudlet can be a local processing unit (such as a desktop

computer) which is directly accessible by the concentrator

through WiFi network. In addition to providing temporary

storage prior to communication of data to the cloud, the

cloudlet can also be used for running time critical tasks on

the patient’s aggregated data. Moreover, the cloudlet can be

used to transmit the aggregated data to the cloud in case of

limitations on the mobile device such as temporary lack of

connectivity or energy.

Cloud Processing has three distinct components: storage,

analytics, and visualization. The system is designed for long

term storage of patient’s biomedical information as well as-

sisting health professionals with diagnostic information. Cloud

based medical data storage and the upfront challenges have

been extensively addressed in the literature [23], [24]. Analyt-
ics that use the sensor data along with e-Health records that

are becoming prevalent can help with diagnoses and prognoses

for a number of health conditions and diseases. Additionally,

Visualization is a key requirement for any such system because

it is impractical to ask physicians to pore over the voluminous

data or analyses from wearable sensors. Visualization methods

that make the data and analyses accessible to them in a readily

digestible format are essential if the wearable sensors are to

impact clinical practice.

In the following sections, we consider the key elements
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Bio-marker CVD COPD PD/HD Diabetes
Gait (posture) �� �� �� ?

ECG �� �� � �
Respiratory rate �� �� � ?
Skin temperature � � � �

Surface EMG � � � ?
Sweating ? ? � ?

Blood pressure �� � � �
Body movements � ? �� ?
Blood Glucose ? ? ? ��

Heart Sound � � ? ?
Oxygenation �� �� ? ?
Title volume �� �� � ?

TABLE I
LIST OF AVAILABLE (TOP) AND FUTURE (BOTTOM) SENSORS AND THEIR

APPLICABILITY TO DETECTING HEALTH CONDITIONS RELATED TO THREE

COMMON DISEASE CATEGORIES: CARDIOVASCULAR DISEASES

(CVD) [25], CHRONIC OBSTRUCTIVE PULMONARY DISEASE

(COPD) [26], AND PARKINSON’S/HUNTINGTON’S DISEASES (PD) [27],
[28]. ��INDICATES HIGH APPLICABILITY, �INDICATES SOME

APPLICABILITY, AND ? INDICATES UNDETERMINED APPLICABILITY.

of the overall system illustrated in Fig. 1 and highlight the

opportunities and challenges for each in integrating remote

health monitoring into clinical practice.

IV. DATA ACQUISITION AND SENSING

Physiological data is acquired by wearable devices that

combine miniature sensors capable of measuring various phys-

iological parameters, minor preprocessing hardware and a

communications platform for transmitting the measured data.

Table I summarizes various biomarkers that can be measured

by current or soon-to-be-available wearable sensors. The level

of applicability of these biomarkers to diagnosing four com-

mon disease categories is also indicated in the table.

The wearability requirement, poses physical limitations on

the design of the sensors. The sensors must be light, small, and

should not hinder a patient’s movements and mobility. Also,

because they need to operate on small batteries included in the

wearable package, they need to be energy efficient. Though the

battery may be rechargeable or replaceable, for convenience

and to ensure that data is not lost during recharging or battery

replacement periods, it is highly desirable that they provide

extended durations of continuous operation without requiring

charging or replacement.

The low energy operation requirement can also pose a

challenge for the quality of the data captured in terms of

the achievable signal to noise ratio. Recent designs [5], [29],

[30] of flexible sensors that can be placed in contact with

the skin in different body parts are particularly attractive for

medical applications because, compared to alternatives, the

close contact with the skin allows measurement of more physi-

ological parameters and with greater accuracy. There have also

been efforts to prolong the operational lifetime of wearable

sensors by incorporating low power device and circuit level

techniques [31], [32] and energy harvesting methods [33] .

Moreover, utilizing intelligent sensing methods on system level

can further increase the operational longevity.

Energy efficient sensing mechanisms have been studied in

the related context of wireless sensor networks (WSNs) that

are used to sense physical phenomenon in a distributed fash-

ion. Although the sensor deployment in our health monitoring

system is more concentrated compared to WSNs, existing

methods for WSNs can be revisited to suit our needs. The

proposed energy efficient sensing approaches revolve around

assigning sensing tasks to the nodes based on their relative

distance so as to sense the maximum amount of physical

information while minimizing the energy consumption by

removing possible redundant sensing tasks [34], [35] and

by allocation of tasks based on the energy availability at

each sensor [36]–[40]. Similar mechanisms can be applied

to our system by defining and using a dynamic context that

is based on energy availability and the health condition of

the patient. For example, as indicated in Table I, individually

sensed biomarkers have different levels of applicability for

specific health conditions. When energy is severely limited

and the vulnerable condition of the patient mandates focus

on a specific biomarker, the other sensors be powered off in

order to extend the lifetime. An IoT based sensing architecture

facilitates the implementation of such schemes for improving

energy efficiency adaptively by allowing dynamic utilization of

sensors based on the context. In conventional data acquisition

systems where sensors passively transmit the gathered infor-

mation, such intelligence and flexibility may not be achievable.

Also by offloading the decision making process for sensing

task assignment to the cloud, more sophisticated algorithms

can be applied without requiring manual intervention by the

patient to manipulate the sensors or the software on the data

concentrator.

Energy limitation of these devices necessitates the use of

suitable low power communication protocols, as the communi-

cation can account a significant part of the power consumption

in sensing devices. ZigBee over IEEE 802.15.4 is commonly

used in low rate WPANs (LR-WPANs) to support commu-

nication between low power devices that operate in personal

operating space (POS) of approximately 10m [41]. ZigBee

provides reliable mesh networking with extended battery life.

Bluetooth low energy (BLE) is another wireless communi-

cation protocol suitable for low power short range commu-

nication suitable for the unique requirements of applications

such as health monitoring, sports, and home entertainment.

The original Bluetooth protocol (IEEE 802.15.1) was designed

to support relatively short range communication for applica-

tions of a streaming nature, such as audio. BLE modifies

the framework by utilizing much longer sleep intervals to

decrease the overall energy consumption. BLE achieves higher

energy efficiency in terms of number of bytes sent per Joule

of energy [42]. When using the aforementioned communi-

cation protocols, an intermediate node (data concentrator)

is necessary to make sensors data and control accessible

through Internet. To further realize the IoT concept, IPv6 over

Low Power Wireless Personal Area Networks (6LoWPAN)

has been proposed to seamlessly connect energy constrained

WPAN devices to the Internet [19]. 6LoWPAN defines frag-

mentation techniques to fit IPv6 datagrams into IEEE 802.15.4

limited frame size to provide IP access to low power, low

complexity sensing devices.
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V. CLOUD DATA STORAGE AND PROCESSING

Data aggregated by the concentrator needs to be transferred

to the cloud for long term storage. Offloading data storage

to the cloud offers benefits of scalability and accessibility

on demand, both by patients and clinical institutions. Also,

utilized with analytics and visualization (described in subse-

quent sections), cloud hosting and processing can reduce costs

at HCOs and provide better diagnostic information. In this

section, we outline such could architectures and discuss issues

that impact long term medical data storage on the cloud.
a) Hybrid Cloud/Cloudlet Architecture: Cloudlet is a

limited resource computing and storage platform that elim-

inates the need to outsource resource intensive tasks to the

enterprise cloud [43]–[45]. Cloudlet computing has been in-

troduced as a potential solution to deliver low latency to

time critical tasks for health monitoring applications via body

area networks [46]. Communication between concentrator and

cloudlet is realized through WiFi interface. Direct connection

between these two entities reduces data transfer latency for

time critical tasks on aggregated data. LTE access provided in

concentrator can in turn be used for direct data transfer from

the concentrator to the cloud bypassing the cloudlet, while

exposing the data to the latency imposed by mobile network.
b) Context-Aware Concentration via Smart Devices: As

previously indicated, smart phones can at as concentrators in

IoT infrastructure as today’s smart phones can use both LTE

and WiFi as the backhaul network. Data aggregation can be

carried on either in cloudlet (thorough the WiFi connection

between concentrator and the cloudlet) or the cloud (LTE). In

studies, the former compared with the latter, has been shown to

provide ten times the throughput and to require only a tenth of

the access time, and half the power [47], [48]. Aggregated data,

however, needs to be finally be stored in the cloud to allow

distributed access and reliable storage. To effectively partition

data aggregation tasks between cloud and cloudlet, context

aware concentration may be utilized. Context can account for

the current and expected status of the patient. For example,

when the patient is in a critical condition requiring time critical

monitoring of biosensor data, data concentration may be the

preferred choice.
c) Privacy of the Data Concentrator: Although person-

ally identifiable information can be removed before trans-

mitting sensed data information, the system is still prone

to aggregate disclosure attacks that can infer information

via pattern recognition approaches [49]. Context aware data

concentration, while offering some benefits, may also make

sensed information vulnerable to aggregate disclosure attacks

by allowing intruder to infer a patient’s health information

through network traffic analysis from concentrator to mobile

back haul. Standard encryption techniques can be employed

to ensure security in such settings [50].
d) Secure Data Storage in the Cloud: Privacy is of

tremendous importance when storing individual’s electronic

medical records on the cloud. According to the terms de-

fined by Health Insurance Portability and Accountability Act

(HIPAA), the confidential part of medical records has to be

protected from disclosure. When the medical records are out-

sourced to the cloud for storage, appropriate privacy preserving

measures need to be taken to prevent unauthorized parties from

accessing the information. Secure cloud storage frameworks

have therefore been proposed for use with sensitive medical

records [51]–[53]. Secure medical data processing on the cloud

remains a challenge.

VI. ANALYTICS

Compared with the lab and office based measurements

that are the workhorses of current clinical medical practice,

wearable sensors can readily incorporate multiple physiolog-

ical measurements and enable gathering of data with much

finer temporal sampling over much longer longitudinal time

scales. These rich datasets represent a tremendous opportunity

for data analytics: machine learning algorithms can poten-

tially recognize correlations between sensor observations and

clinical diagnoses, and by using these datasets over longer

durations of time and by pooling across a large user base,

improve medical diagnostics. As in other big data applications,

the use of analytics here can improve accuracy, allow earlier

detection, enable personalization, and reduce cost by reducing

expensive lab procedures that are unnecessary.

Analytics on wearable sensor data can conceptually utilize

a wide-range of pattern recognition and machine learning

techniques [54], that have matured significantly and are now

commonly available as toolboxes in several software pack-

ages [55], [56]. Several challenges must, however, be over-

come before analytics can be deployed on any meaningful

scale. Some of these challenges are analogous too those in

other big data problems where as others are unique to out

setting. There are also, however, challenges unique to analytics

with wearable sensor data and to the medical and clinical

seeing that we’re focused upon. We highlight a few of these:

• Firstly, conventional medical instrumentation evolves at

a fairly slow pace. New equipment and measuring de-

vices typically require regulatory approval and training

of medical personnel, which limits the rate at which new

innovations can be introduced. The pace of development

in electronics, on the other hand, is much faster and

dictated by economic considerations to closely align with

the so called Moore’s law. This implies that the wearable
sensors represent a much more dynamically evolving
set of measurement devices than conventional medical
instrumentation and as new sensor modules are added,

sensors are updated, or obsoleted, there is likely to be a

heterogeneous mix in deployment at any point in time.

Machine learning methods need further development to

deal with such heterogeneous and constantly evolving

sensory inputs.

Analytics on data from wearable sensors needs to cope

with streaming data, inevitably missing data values, and

data of varying dimensionality and semantics as sensor

designs change over time. Learning tasks face a signif-

icant challenges operating in these environment, even

though some advances have been made in this area
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with the recent emergence of Big Data applications with

massive volumes of high-dimensional observations that

are often available in a streaming mode. Sequential algo-

rithms targeting online support vector machines (SVMs)

have been developed both in primal [57] as well as dual

domains [58], [59]. These algorithms, however, are not

designed to deal with time-varying feature dimension-

ality, incomplete data vectors due to absent features or

acquisition failures, which if not treated properly, can

seriously impair classification performance. To cope with

missing input data, it is possible to impute the absent

values using linear or nonlinear functions of the avail-

able features, and then proceed with clairvoyant learning

schemes based on full data. Imputation schemes such as

substitution with zero, entry-wise mean, and weighted

averaging of the K-nearest-neighbors are popular interpo-

lators, along with other more sophisticated but also more

costly ones that can be found in [60]–[62].

• Secondly, while sensor data is plentiful, it is completely

untagged and needs to be associated with corresponding

“ground truth semantics”, i.e., physician diagnoses, in or-

der to be usable in training machine learning algorithms.

Requesting this as additional inputs from already over-

loaded physicians is, however, infeasible. Thus alternative

creative methods are required for generating the training

data for our setting. An attractive possibility here is

the ability to leverage clinical records, which are also

becoming more readily accessible through the deploy-

ment of e-Health records systems. Figure 2 illustrates

this framework for data analytics: the prior sensor data

with associated data from the clinical records, mined

across many individuals, can form the basis for machine

learning where the physician diagnoses that are already

part of the clinical record provide the necessary semantic

labeling of ground truth once they are appropriately

temporally-aligned with the sensor data. The learned

classification and regression methodologies can then be

used with current data to inform the physician’s current

prognoses/diagnoses. The process can then be iterated.

The advantage of creating the linkage with the clinical

records is that ongoing clinical practice can provide

training data for the machine learning with little or no

additional burden on the physicians.

• Thirdly, the data inputs for inference are highly het-

erogeneous. The sensory data represent very different

modalities. The demographic and historical information

in the clinical records, although extremely informative for

inference is fundamentally of a very different nature from

the sensor data. This range of heterogeneity challenges

conventional machine learning approaches that deal pri-

marily with homogeneous data. Graphical models [63]

that allow combination of heterogeneous inputs in a

common framework are therefore likely to be helpful for

inference in these settings, though these are also likely to

require significant customization to be effective

Fig. 2. Analytics workflow for systems integrating wearable sensor technol-
ogy into clinical practice.

VII. VISUALIZATION

It is impractical to ask physicians to pore over the volumi-

nous data or analyses from IoT-based sensors. To be useful in

clinical practice, the results from the Analytics Engine need

to be presented to physicians in an intuitive format where they

can readily comprehend the inter-relations between quantities

and eventually start using the sensory data in their clinical

practice. Visualization is recognized as an independent and

important research area with a wide array of applications in

both science and day to day life [64]. Given that color is

a key discriminative attribute of our visual perception, it is

unsurprising that color plays a key role in information visual-

ization. Color distance and color category have been shown to

be effective in allowing rapid identification and comprehension

of differences in visually presented data [65]. The type of

color visualization that is most effective is dependent on the

type of data. For unidimensional relations, principles for vi-

sualization of relations have also been established: Qualitative

palettes, where the same perceptual importance is given to

all colors, are preferred when categorical data is transmitted,

like bar graphs, pie charts, etc. Sequential palettes, where

colors with lightness differences are assigned, are suggested

for numerical variables whose value ranges in an interval. For

classification maps, diverging palettes, that mix the qualitative

and sequential palette instructions, are considered as the best

option [66]. Visualization of multi-dimensional data, on the

other hand, uses a combination of color, spatial location and

other attributes and remains a challenging problem.

Data gathered or inferred from IoT sensors spans the com-

plete spectrum of categories outlined in the previous paragraph

and therefore an array of different visualization methodologies

are required for effective use of the data. A distinct aspect of

wearable sensor data, relative to data acquired at a laboratory

or during a clinical visit, is that the data are gathered over a

much longer longitudinal duration, with a finer temporal sam-

pling, and simultaneously across multiple modalities. While

the data represents a treasure trove for machine learning and

inference, for the physician, it is problematic in the absence

of tools to readily visualize and interact with the data. The

time-varying and multi-dimensional aspects of the data pose

a particular challenge because these have typically not been

used in clinical practice even though the temporal variation
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and evolution of data and analyses results are of particular

interest for diagnosis.

To highlight the utility of effective visualization of temporal

information, we present a concrete example for cadio-vascular

disease (CVD) monitoring [6], [67], [68]. Holter monitor-

based ECG recording over durations of 24-48 hours is already

utilized in CVD diagnosis [69]. Among other things, such

monitoring is useful for detecting abnormal elongation of the

QT interval, which represents the duration of time taken for

electrical depolarization and repolarization of the ventricles

and measured on the ECG as the duration between the start of

the Q-wave and the end of the T-wave [70]. An abnormal pro-

longation of this interval, called Long QT Syndrome (LQTS)

is an important indicator of potential malfunctioning of the

heart [70], [71]. For diagnosis, a corrected value, QTc, that

compensates for the natural variation in QT interval with the

heart rate [72] is more directly informative than the raw QT

values. The QTc interval is usually around 400 ms in a healthy

person, and may go up to 500 ms or even higher with LQTS.

After a patient undergoes a holter based recording session,

QTc values are commonly obtained from analyses of ECG

data and available to the physician for the duration of the study

(one value per heart beat). A cardiologist that has 20 patients

may have access to a table containing yesterday’s two million
QTc values, which can clearly not be individually examined

as raw data. In current practice, cardiologists typically spot-

check about 10 seconds of the patient’s ECG, and review the

computed average values over a full 24-hour recording. This

process discards a lot of key information. In the case of LQTS,

for instance, QTc could be prolonged for several minutes or

even hours without the doctor noticing the problem. There is

a clinical need for a better way to visualize the full data set.

Figure 3 illustrates a scheme that we have recently devel-

oped for visualizing long-term monitoring of corrected QT

(QTc) results [6], [67], [68]. The two plots shown in Figure 3

show 24 hour Holter monitoring results plotted within a circle.

Midnight is the top of the plot and noon is the bottom. Low

QTc values are inside the circle, and high values are along

the edges. Different color bands are the QTc thresholds for

normal (green: 360–425 ms), borderline (yellow: 450–500

ms), and abnormal (red: ≥500 ms). While the healthy patient’s

QTc (top figure) always stays within the normal region, the

unhealthy patient’s QTc (bottom figure) transitions into the

abnormal region. These type of plots shown in Figure 3 allow

for the physician to readily see and comprehend the the full

temporal variation in QTc over the entire recording interval,

instead of having to spot check individual values. Note also the

significant change in QTc at night in Figure 3, which cannot

be detected in clinical ECG monitoring done during the day.

While this example focused on QTc and 24-hour observation

periods, the process and framework will be similar to monitor

other medical markers such as O2 saturation or glucose levels,

and over different time intervals.

The preceding example illustrated the visualization of one

parameter over the temporal duration of the recording via an

informative image, which we note was static as opposed to

Fig. 3. QTc (in seconds) over 24 hours using the Bazett correction equation
[73]. Top: healthy 24yo male patient. Bottom: 35yo male patient with the
LQT2 genetic mutation, on beta blockers. “Slices” in the plots indicate a
period that was not recorded. The green band is the interquartile range for
healthy male patients in the THEW database [74]. Red represents abnormal
and potentially dangerous QTc values.

varying with time. One can also readily present a number of

parameters in parallel via one such image for each parameter.

While this can be efficient for the physician to see the variation

in each individual parameter at a glance, it is not as intuitive

for understanding how the displayed parameters may co-vary

over time. To address, this, additional visualization methods

are required for visualizing the temporal dimension. The inter-

activity available through touch interfaces in modern mobile

devices such as smartphones and tablets offers a particularly

attractive opportunity for visualization of temporal relations.

We have already been using such interactivity for improving

the access of color deficient individuals to color imagery [75].

By leveraging interactivity, this interface also allows us to

visualize changes over time, which as we already noted, is

a particular aspect that makes wearable sensor data particu-

larly useful but also challenging to use in physicians clinical

settings. While there has been prior work on visualization of

time-related data in biological settings [76], the focus has been

entirely on static images suited for inclusion in a publication.

Different from these, methodologies particularly adapted for

interactive use that intuitively allows the physician to scroll

back and forth in time to assess the temporal evolution and co-

evolution of different quantities of interest using smartphone

and tablet devices already being deployed in their offices.
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VIII. SUMMARY AND CONCLUDING REMARKS

In this paper, we reviewed the current state and projected

future directions for integration of remote health monitoring

technologies into the clinical practice of medicine. Wearable

sensors, particularly those equipped with IoT intelligence,

offer attractive options for enabling observation and recording

of data in home and work environments, over much longer

durations than are currently done at office and laboratory visits.

This treasure trove of data, when analyzed and presented to

physicians in easy-to-assimilate visualizations has the potential

for radically improving healthcare and reducing costs. We

highlighted several of the challenges in sensing, analytics, and

visualization that need to be addressed before systems can be

designed for seamless integration into clinical practice.
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